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1. Introduction.

Consider a circle of unit circumference and n points taken from

a uniform distribution on it. Let the successive arc-lengths or spacings

between these points be denoted by S1, S2, ..., Sn with

S1 + S2 + ... + Sn = 1 . Such spacings have been widely studied, see,

e.g., Hoist (1979), (1980a), (1980b) and the references given therein.

Let S(n) be the largest spacing, i.e., maxl<k<n Sk . In various

ways it can be proved that

P(n S(n) - In n < x) - exp(-e
- x )

when n ; for an elementary proof see Holst (1980b), Theorem 3.1.

In Section 2 we will give a rigorous proof of the convergence of the

momentgenerating functions. This does not seem to have been done before.

Let each of the n points be the left endpoints, say, of arcs on

the circle, all of length a . It is easy to see that the whole circum-

ference is covered if and only if S(n) _ a , and that the uncovered

part of the circumference, i.e., the vacancy, has length

n
Vn a I (Sk - a)+.

kal

Exact formulas for the distribution and moments of V are given inn

Siegel (1978). Results on the asymptotic behavior of Vn  are obtained

in Siegel (1979a). Depending on how n and a * 0 , different

cases occur. For the case n * ®, a * 0 such that P(V -0) 4 p
n

0 < p < I , it is proved in Section 3 that the momentgenerating function
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of 2n Vn is converging to that of the noncentral chi-square with zero

degrees of freedom, i.e., a Poisson-mixture of chi-square distributions

with even degrees of freedom and a one point distribution in zero, c.f.

Siegel (1979b) for further aspects of this distribution. This is a

slight generalization of Siegel (1979a), Theorem 3.2, using quite

different methods. In Section 4 the case when n - -, a - 0 such that

P(Vn = 0) - 0 and lim inf na > 0 is studied. The limiting distri-

bution of (n Vn - E(n V n))/(Var(n V n)) is a standard normal. Also, the

momentgenerating functions converge in a neighborhood of zero implying

convergence of all moments. This extends results by Siegel (1979a),

who considered the special case na = A ln(n/a) , where 0 < A < 1

and a > 0 and proved convergence of moments and distributions. The

methods used below are quite different from Siegel's.

The problems discussed above can obviously also be formulated as

taking n - I points from a uniform distribution on the unit interval,

[0,1]. The endpoints correspond to one of random points on the circum-

ference.

2. The Largest Spacing.

The exact distribution of S(n) can be found in many places, see,

e.g., Holst (1980b), Section 2, and the references given therein. There

the moments are also given and, e.g.,

E(n S (n) k = In n + y + o(i)
k-l

where
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lim I- In n= ,
n (kw k)

is Euler's constant. Hence, n S W is of the order of magnitude in n

when n - . It is also well known that

P(n S(n ) - In n < x) - exp(-e
- x )

when n w . For an (almost) elementary proof of this see Holst (1980b),

Theorem 3.1. Barton and David (1956), page 86, considered convergence of

a certain generating function. Before stating a theorem on convergence

of the momentgenerating function of n S(n) - In n we will recall some

facts about spacings.

Let X1, X2, ..., Xn  be i.i.d. exponential random variables with mean

1, and let X(1 ), X(2 ) .... , X(n)  denote the corresponding order statistic.

Then the following representations hold

£(n S1,.. n Sn -2 ***0 k-i9 Xk n

and

£(n X(i), (n-1)(X( 2 )-X( 1 )) , ... , lMX~n - X(n))) = £(Xn, X , ... X1)

This is easily proved using simple properties of the Poisson process, or

see, e.g., Feller (1971), pages 19, 75-76. 1 -
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Theorem 2.1. Let S1, ..., Sn  be the spacings of n points taken

from the uniform distribution on the circumference of a unit circle and

set S(n) =maxl<k<n Sk ' Then for t < 1

E(exp(t(n S(n ) - in n))) - r(l - t)

when n -o , where the gamma function can be written

r(i - t) - etx d(exp(-e-X))

From this Theorem we immediately have by the continuity theorem for

momentgenerating functions that:

Corollary 2.1. Let Y have the extreme value distribution

exp(-e - x ) . Then

Z(n S(n ) - In n) V (Y)

and, for r > 0

E((n S(n ) - In n)r) * E(Yr)

when n -

Before proving the Theorem we will obtain the following lemma which

also is of some independent interest, at least the method of deriving it.
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Lemma 2.1. For t < 1 and n > 2 ,

n+1 -n -1
E(exp(tn Sn)) ( (2v n e -/n)

f E(exp(t X(n) + iu(- 1))) du

where X = maxl<k<n Xk X W 1 Xk n and X11 n are i.i.d.

exponential random variables with mean I

Proof. From the representation of order statistics given above, it

follows that

Z (n), ) -X Xk/k, I X'/k•

(1 k=1

Thus

n
E(exp(t X(n ) + iu X)) - R E(exp(Xk(t/k+iu/n)))

k=1

n -
n (1- t/k- iu/n)-  ,

k-i

which clearly is an integrable function of u for n > 2 . Using con-

ditional expectation we can write
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E(exp(t X (n)u+ ))

- J0 E(exp(t X ()+ iu X) IR x) f (x)dx

- e iux E(exp(t X C))I = x) -f (x)dx

where f Cx) is the density function of R which is F(n,1/n)-distributed.

By the integrability of E(exp(t X ()+ iu ))it follows by Fourier's

inversion formula that

E(exp(t X(n))ARl X) x f C x)

(2Tr-1 IO E(exp(t X (n juX)-e uX d

Thus by the representation of spacings we finally have

E(exp(tn S ()) E(exp(t X () ) - 1)

-(21T f 0l)0l 0 EexpCt X (n) + iu X)) -ei du

= (21v nl en/nii j000 E(exp(t X (n) + iu(X - 1)))du

prooving the assertion.

Proof of Theorem 2.1. From the lemma, the representation of order

statistics of the exponential distribution, and Stirling's formula, we have
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E xp (t S - k I /)

(20 I E(exp((tlk + iuln )(X,- )))du
-~ ).oc~k-i l/

- (2Tr) I expiu(n t/(k - t)

n

11 [ exp(-iu/(n5(l - t/k)))/(l - iu/(n (I- t/k)))]du

k-l

n (e t/k/
.

11 (e /(l - t/k))
k-i

for t < 1 . Now for fixed t < 1 , when n-

II (e -k/(l - t/k))
k-l

n
E exp (t\ ) -I 1/k))) eYt rI( - t)

where y is Euler's constant, c.f. Holst (1980b), Theorem 3.3. The

integrand in the integral above is dominated by

gn(u) - (1 + c u2/n) -n/2

for some c > 0 . Furthermore,

lim gn(u)du - Ilim gn(u)du
n--

.. .. ..... .. ..... ....... "... .. ...... .. . ..... '" ... .... . ....... ..11111|I . .. ..... ... ..



For fixed t < 1 , when n -0-0,

exp(n k t/(k - t) 1

and

n

IT[exp(-iu/(n'(1 - t/k))) /(l iu/(n (I- t/k)))]
k-l

exp(-u'/2)

Thus it follows from the extended form of Lebesgue's convergence theorem,

see, e.g., Rao (1973), page 136, that

lim E(exp(t(n S (n) - in n)))
n-o

e-Yt (2r)-  f eu/2 du eYt r(l-t) - r(I-t)

proving the assertion of the theorem.

Remark. With small modifications in the proof above the convergence

of the momentgenerating function of any upper extreme value n S (n-j) - In n

follows. Central order statistics are considered in Holst (1980b), Section 5.

3. Positive Coverage Probability.

In this section the coverage distribution, or equivalently the

vacancy, of random arcs is studied, when the complete coverage probability
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stays strictly positive. With the notation of the introduction we can

write

P(V 0) = (Sk-a)+

P(S(n) < a) = P(n S(n) - in n < na - in n)

From the results of the previous section we see that

pn p , 0 < p < I <->

na - in n - In ln(i/p)

i.e., a complete coverage probability strictly between 0 and 1 is

equivalent to na - in n = 0(l) . It also follows that

Pn <=> na - in n -+o

and,

P - 0 <=> na - In n -

Another way of stating the first two cases is

-8 0 8 '
P(Vn = 0) - e , 0 < C

The limit behavior of Vn  is given by the following theorem. In the

next section the case p 0 is considered.
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Theorem 3.1. Let n arcs, each of length a , be placed at random

on a unit circumference and V be the length of the uncovered part of
n

the circumference. Assume that n - -, a - 0 , such that P(V =0) en

0 < 3 < . Then, for t e 1 , when n -- ,

E(exp(tn V n)) e - + a/ (I t )

In Siegel (1979b) the noncentral chi-square distribt!ion with zero

degrees of freedom is discussed. A consequence of Theorem 3.1 is the

following corollary which is also proved in Siegel (1979a) by the method

of moments.

Corollary 3.1. Let Z be a random variable with a noncentral chi-

square distribution with zero degrees of freedom and non-centrality

parameter B . Then, when n - - ,

£(2n Vn) £ (Z)

and,

E((2n V n) r E(Z r )

for all r - 0

Before proving Theorem 3.1 the following lemma will he proved.
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Lemma 3.1. Let X., ..., Xn  be i.i.d. exponential random variables

with mean 1 . Then for t < 1 and n > 2,

n+1 '-n
E(exp(tn Vn)) = (21T n en/n!) - I

/O n
S Ee xp t 1. (Xk - na) + iu(X 1) du

-w-

Proof. By the independence between the X's and after some ele-

mentary calculation one obtains

E(expt l (Xk - na) + + iu
k=l

= [E(exp(t(X1 - na)+ + iu X1 /n))]
n

= (I - iu/n)-  [I + t exp(-na(l - iu/n))/(l - t - iu/n)J,

which is integrable in u for n > 2 . Using the representation of

spacings with exponential random variables we have

Zn V)n ~(Xk - na)+ji )

The rest of the proof proceeds like that of Lemma 2.1.

Proof of Theorem 3.1. By the lemma above and Stirling's formula

we get
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E(exp(tn V d) - (2v)-i

T00(expC-iu/n')/( - iu/n )] n

[1I + t exp(-na(1 - lu/n ))/(1 - t - lu/n )]n du

As na > in n we get for fixed t < 1 uniformly in u that

Il+ t exp(-na(l - iu/n; ))/(1 - t - i/3)I

< (1 + KlItj/nhl - t- iu/ , In < K2 <

As

i. 11 - iu/n '-,I du

_ rn1, 1i _ u/, In du e 2U /2 du

-(27T)

and pointwise

[1 + t e na *exp(lu na/n Ml/ t i- - n

-~exp(at/(1 - t))
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it follows by the extended form of Lebesgue's convergence theorem that

E(exp(tn Vn)) n (2_)

exp(-u 2/2) * exp(Ot/(l - t))du

= -$ e3/(l-t),
-e e

for t < 1 , which proves the theorem.

Remark. The function

e- B ea/(l
- t) = (e- a klk!) (1 - t)-k

k-O

N
is the momentgenerating function of E Xi , where N, X1, X2, ...,

are independent random variables, N Poisson with mean 6 and the X's

exponential with mean 1. One can interpret N as the number of gaps, i.e.,

the number of regions on the circumference which are not covered by any

of the arcs. This can be proved in a similar way as Theorem 3.1 using

the indicator function I(. > na) instead of (. - na) . Clearly

P(N = 0) = e- a is the probability of complete coverage. It is in-

tuitively clear that the lengths of the gaps (after scaling with n)

should be independent exponential random variables. Because an arbitrary

spacing n Sk converges in distribution to an exponential with mean 1

and depending on the lack of memory of the exponential distribution the

excess (of any) over na has also in the limit an exponential distribution
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with mean 1. Theorem 3.1 is thus very reasonable. One can also say

that the dependence structure between the spacings disappears in the

case na > In n Actually the dependence is asymptotically negligible

as soon as na +' which will be apparent from the results of the next

section.

4. Zero Coverage Probability.

It is pointed out in the previous section that

Pn P(V = 0) 0 <--> na In n -

Two cases are of interest, namely, na - +o , but na - in n - -,

and na - a, 0 < a < - . The case na - 0 means that the maximum covered

length , na , is tending to zero and, therefore, V + 1 . Let us in-n

troduce

S2n(e - na - -2na + na + (na )2/2))
n

In the case na - + we have a 2n e , and a - if and only
n n

if na - In n - --

Theorem 4.1. Suppose that n - w and a - 0 in such a way that

a + n ,and liminf na>O . Then, when n--,n

t2/

E(exp(t(n V -n ea)/On e

for all sufficiently small 1t
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Proof. As in the proof of Theorem 3.1, we find that

E(exp(t(n V - n e-na)/a ))

(2w) - f gn(u) hn(ult)du

where

gn(u) - (exp(-iu/n )/(1 - iu/n ))n

exp(-u 2/2) , n + ,

and,

hn (U,t) =exp(-tn e-na an

n n

(1 + (t exp(-na(l - iu/n)M)/(l - t/o n - iu/n ))

For fixed t and u one finds after some calculation that

gn(u) hn (u.t)

exp(-(u - it e-na (na + l)n/a n)2/2 + t2/2 + o(l))

Thus one would expect

i1



E(exp(t(n Vn - n e- na)/o )

-'* 2 t2/2 t2/2

exp(-(u + 0(1)) 2/2 + o(l))du .e - e

The problem to justify these approximations is not trivial because o(1)

is not uniform in u .

We will consider the integral above over three different regions,

namely, II fu ; iul - n . , 1 - {u; n < lul _ 6 n I , and

13 - (u; 6 n < ul i where 6 > 0 is a "sufficiently" small number.

The idea is the same as that of proving local limit theorems using

characteristic functions, see, e.g., Feller (1971), page 516.

In the interval I one finds by expansion that uniformly in u

lhn(u,t)l < K1 <

for some constant K1 . Thus

n

li. lim sup g n (u) h (ut)dul
A- n- A n

nk unmn/2Kdu O

< lim lim supn (1 + uK du 0
A-o n- fAI

Using this it follows by the expansion above that

lis (2r) -  ( gn(u) hn(U't)du

16



In the region 12 with 6 > 0 fixed sufficiently small one finds

in a similar way that

h n (U,t)j. K K2 exp(K 21 tj n
)

for some constant K 2 < . Thus

Ifi gn(u) hn(ut)du

< ( + u2/n) - n / 2 K exp(Kit i n")du
2

<K 3 n exp(-K4 n;) 0 , n - O

for some constants 0 < K3, K4 < , and Itl sufficiently small.

Finally for 13 we find for some constants 0 < K5, K6, K7 <

that

*I' 8n(u) hn (u, t)duI13

+ u2 - + 2)-n/2
(K oJ (lu n)l du(l+ ) exp(K 6 n)

n 2

K7 n (1 + 62)- n /2 exp(K 6 n) 0, n - 0 n

Combining the results above gives

gn (u) hn(ut)du e e

17



proving the assertion of the theorem.

In Siegel (1978) formulas for moments of the vacancy are obtained.

Either by using these or by direct calculation it is not hard to show

that

-na

E(n V) - n e = 0(I)

and,

Var(n V n)/a 1

when n a *0 ,such that a +0 and lim inf na > 0. Thus then

following corollary follows.

Corollary 4.1. If a - + ' and lim inf na > 0 , then

£((n V - E(n V n))/(Var(n V n)) )

N(Ol)

and all moments and the momentgenerating function converge to those of

the standard normal distribution.
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